Approximation of IMSE-optimal Designs via Quadrature Rules and Spectral Decomposition
نویسندگان
چکیده
We address the problem of computing IMSE (Integrated Mean-Squared Error) optimal designs for random fields interpolation with known mean and covariance. We both consider the IMSE and truncated-IMSE (approximation of the IMSE by spectral truncation). We assume that the MSE is integrated through a discrete measure and restrict the design space to the support of the considered measure. The IMSE and truncated-IMSE of such designs can be easily evaluated at the cost of some simple preliminary computations, making global optimization affordable. Numerical experiments are carried out and illustrate the interest of the considered approach for the approximation of IMSE optimal designs.
منابع مشابه
Approximation of IMSE-optimal designs via quadrature rule and spectral decomposition
We address the problem of computing IMSE (Integrated Mean Square Error) optimal designs for random fields interpolation with known mean and covariance. We assume that the MSE is integrated through a discrete measure and restrict the design space to the support of the measure considered. For such quadrature designs, the computational cost of IMSE evaluations can be significantly reduced by consi...
متن کاملSpectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models
We address the problem of computing IMSE-optimal designs for random field interpolation models. A spectral representation of the IMSE criterion is obtained from the eigendecomposition of the integral operator defined by the covariance kernel of the random field and integration measure considered. The IMSE can then be approximated by spectral truncation and bounds on the error induced by this tr...
متن کاملConvex relaxation for IMSE optimal design in random-field models
The de nition of an Integrated Mean-Squared Error (IMSE) criterion for the learning of a random eld model yields a particular Karhunen-Loève expansion of the underlying eld. The model can thus also be interpreted as a Bayesian (or regularised) linear model based on eigenfunctions of this Karhunen-Loève expansion, and can be approximated by a linear model involving orthogonal observation errors....
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 45 شماره
صفحات -
تاریخ انتشار 2016